Perfect modules with Betti numbers (2,6,5,1)
نویسندگان
چکیده
In 2018 Celikbas, Laxmi, Kraśkiewicz, and Weyman exhibited an interesting family of perfect ideals codimension three, with five generators, Cohen-Macaulay type two trivial multiplication on the Tor algebra. All previously known had been found by Brown in 1987. Brown's all have non-trivial We prove that are obtained from (non-homogeneous) specialization. also both families ideals, when built using power series variables over a field, define rigid algebras sense Lichtenbaum Schlessinger.
منابع مشابه
Auslander-reiten Components Containing Modules with Bounded Betti Numbers
Let R be a connected selfinjective Artin algebra, and M an indecomposable nonprojective R-module with bounded Betti numbers lying in a regular component of the Auslander-Reiten quiver of R. We prove that the Auslander-Reiten sequence ending at M has at most two indecomposable summands in the middle term. Furthermore we show that the component of the Auslander-Reiten quiver containing M is eithe...
متن کاملExtremal Betti numbers of graded modules 1 Marilena Crupi
Let S be a polynomial ring in n variables over a field K of characteristic 0. A numerical characterization of all possible extremal Betti numbers of any graded submodule of a finitely generated graded free S-module is given. 2010 Mathematics Subject Classification: 13B25, 13D02, 16W50.
متن کاملUpper Bounds for Betti Numbers of Multigraded Modules
This paper gives a sharp upper bound for the Betti numbers of a finitely generated multigraded R-module, where R = k[x1, . . . , xm] is the polynomial ring over a field k in m variables. The bound is given in terms of the rank and the first two Betti numbers of the module. An example is given which achieves these bounds simultaneously in each homological degree. Using Alexander duality, a bound...
متن کاملGRADED BETTI NUMBERS AND h-VECTORS OF LEVEL MODULES
Abstract. We study h-vectors and graded Betti numbers of level modules up to multiplication by a rational number. Assuming a conjecture on the possible graded Betti numbers of Cohen-Macaulaymodules we get a description of the possible h-vectors of level modules up to multiplication by a rational number. We also determine, again up to multiplication by a rational number, the cancellable h-vector...
متن کاملBetti Numbers of Graded Modules and Cohomology of Vector Bundles
In a remarkable paper Mats Boij and Jonas Söderberg [2006] conjectured that the Betti table of a Cohen-Macaulay module over a polynomial ring is a positive linear combination of Betti tables of modules with pure resolutions. We prove a strengthened form of their Conjectures. Applications include a proof of the Multiplicity Conjecture of Huneke and Srinivasan and a proof of the convexity of a fa...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Algebra
سال: 2022
ISSN: ['1090-266X', '0021-8693']
DOI: https://doi.org/10.1016/j.jalgebra.2022.02.005